Order preserving and order reversing operators on the class of convex functions in Banach spaces
نویسندگان
چکیده
A remarkable recent result by S. Artstein-Avidan and V. Milman states that, up to precomposition with affine operators, addition of affine functionals, and multiplication by positive scalars, the only fully order preserving mapping acting on the class of lower semicontinuous proper convex functions defined on Rn is the identity operator, and the only fully order reversing one acting on the same set is the Fenchel conjugation. Here fully order preserving (reversing) mappings are understood to be those which preserve (reverse) the pointwise order among convex functions, are invertible, and such that their inverses also preserve (reverse) such order. In this paper we establish a suitable extension of these results to order preserving and order reversing operators acting on the class of lower semicontinous proper convex functions defined on arbitrary Banach spaces.
منابع مشابه
Composition operators between growth spaces on circular and strictly convex domains in complex Banach spaces
Let $\Omega_X$ be a bounded, circular and strictly convex domain in a complex Banach space $X$, and $\mathcal{H}(\Omega_X)$ be the space of all holomorphic functions from $\Omega_X$ to $\mathbb{C}$. The growth space $\mathcal{A}^\nu(\Omega_X)$ consists of all $f\in\mathcal{H}(\Omega_X)$ such that $$|f(x)|\leqslant C \nu(r_{\Omega_X}(x)),\quad x\in \Omega_X,$$ for some constant $C>0$...
متن کاملPartial second-order subdifferentials of -prox-regular functions
Although prox-regular functions in general are nonconvex, they possess properties that one would expect to find in convex or lowerC2 functions. The class of prox-regular functions covers all convex functions, lower C2 functions and strongly amenable functions. At first, these functions have been identified in finite dimension using proximal subdifferential. Then, the definition of prox-regula...
متن کاملWeighted composition operators between growth spaces on circular and strictly convex domain
Let $Omega_X$ be a bounded, circular and strictly convex domain of a Banach space $X$ and $mathcal{H}(Omega_X)$ denote the space of all holomorphic functions defined on $Omega_X$. The growth space $mathcal{A}^omega(Omega_X)$ is the space of all $finmathcal{H}(Omega_X)$ for which $$|f(x)|leqslant C omega(r_{Omega_X}(x)),quad xin Omega_X,$$ for some constant $C>0$, whenever $r_{Omega_X}$ is the M...
متن کاملStrong convergence theorem for finite family of m-accretive operators in Banach spaces
The purpose of this paper is to propose a compositeiterative scheme for approximating a common solution for a finitefamily of m-accretive operators in a strictly convex Banach spacehaving a uniformly Gateaux differentiable norm. As a consequence,the strong convergence of the scheme for a common fixed point ofa finite family of pseudocontractive mappings is also obtained.
متن کاملCharacterizations of $L$-convex spaces
In this paper, the concepts of $L$-concave structures, concave $L$-interior operators and concave $L$-neighborhood systems are introduced. It is shown that the category of $L$-concave spaces and the category of concave $L$-interior spaces are isomorphic, and they are both isomorphic to the category of concave $L$-neighborhood systems whenever $L$ is a completely distributive lattice. Also, it i...
متن کامل